arctanx的导数是什么

arctanx的导数:y=arctanx,x=tany,dx/dy=sec2y=tan2y+1,dy/dx=1/(dx/dy)=1/(tan2y+1)=1/(1+x2)。

证明过程

三角函数求导公式

(arcsinx)'=1/(1-x^2)^1/2

(arccosx)'=-1/(1-x^2)^1/2

(arctanx)'=1/(1+x^2)

(arccotx)'=-1/(1+x^2)

(arcsecx)'=1/(

x

(x^2-1)^1/2)

(arccscx)'=-1/(

x

(x^2-1)^1/2)

反函数求导法则

如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f′(y)≠0f′(y)≠0,那么它的反函数y=f?1(x)y=f?1(x)在区间Ix={x

x=f(y),y∈Iy}Ix={x

x=f(y),y∈Iy}内也可导,且

[f?1(x)]′=1f′(y)或dydx=1dxdy

[f?1(x)]′=1f′(y)或dydx=1dxdy

这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。

例:设x=siny,y∈[?π2,π2]x=sin?y,y∈[?π2,π2]为直接导数,则y=arcsinxy=arcsin?x是它的反函数,求反函数的导数.

解:函数x=sinyx=sin?y在区间内单调可导,f′(y)=cosy≠0f′(y)=cos?y≠0

因此,由公式得

(arcsinx)′=1(siny)′

(arcsin?x)′=1(sin?y)′

=1cosy=11?sin2y????????√=11?x2?????√

=1cos?y=11?sin2?y=11?x2

声明:本文为原创,作者为 特时代,转载时请保留本声明及附带文章链接:https://www.tetimes.com/xiaofei/3718.html