Loading
0

勾股定理证明(勾股定理的证明方法)

最常见的勾股定理证明方法是欧几里得证明,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。

  在欧氏《几何原本》中,勾股定理的证明方法是:以直角三角形的三条边为边,分别向外作正方形,然后利用面积方法加以证明。如图,设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边。延长此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等,即,

在这个定理的证明中,我们需要如下四个辅助定理:

如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS)

三角形面积是任一同底同高之平行四边形面积的一半,如。

任意一个正方形的面积等于其两边长的乘积。

任意一个矩形的面积等于其两边长的乘积。

证明的方法如下:

设△ABC为一直角三角形,其直角为∠CAB。

其边为BC、AB和CA,依序绘成正方形CBDE、BAGF和ACIH。如上图,

画出过点A与BD、CE的平行线,分别垂直BC和DE于K、L。

分别连接CF、AD,形成△BCF、△BDA。

∠CAB和∠BAG都是直角,因此C、A和G共线,同理可证B、A和H共线。

∠CBD和∠FBA都是直角,所以∠ABD=∠FBC。

因为AB=FB,BD=BC,所以△ABD≌△FBC。

因为A、K和L在同一直线上,所以四边形面积。

因为C、A和G在同一直线上,所以正方形面积。

因此=AB2。

同理可证,=AC2。

把这两个结果相加,AB2+AC2=BD×BK+KL×KC

由于BD=KL,BD×BK+KL×KC=BD(BK+KC)=BD×BC

由于CBDE是个正方形,因此AB2+AC2=BC2,即a2+b2=c2。

声明:本文为原创,作者为 特时代,转载时请保留本声明及附带文章链接:http://www.tetimes.com/edu/17969.html

最后编辑于:2021/11/30作者: 特时代

特网有深圳新闻、深圳城事、深圳财经、乐活、汽车、旅游等频道。

暂无评论

发表回复

您的电子邮箱地址不会被公开。

arrow grin ! ? cool roll eek evil razz mrgreen smile oops lol mad twisted wink idea cry shock neutral sad ???